Saurabh Sivakumar

sausiva@ucdavis.edu | linkedin.com/in/saurabhsivakumar | github.com/saurabhsivakumar | Google Scholar

Interests: Multi-scale quantum chemistry, Computational catalysis and materials modelling, Geometric deep learning, Fine-tuning ML models, High-performance computing and Automated workflow development

Education

University of California Ph.D. in Chemical Engineering

Carnegie Mellon University M.S in Chemical Engineering

National Institute of Technology B. Tech in Chemical Engineering, Minor in Economics

SKILLS

- Software/Frameworks: VASP, ORCA, QuantumEspresso, LAMMPS, PLUMED, jDFTx, BerkeleyGW, Gaussian, COMSOL, OVITO, VMD, ChemCAD
- Programming/Markup Languages: Python (Packages: Pytorch, ASE, RDKit, MDanalysis, OpenMM, pySCF, CuPy, Numba, WandB, Parsl, Deap), R, C++, Bash, OpenACC, IATEX

Research Experience

Graduate Student Researcher

University of California (Advisor: Ambarish Kulkarni)

- ML-accelerated design of novel thermal and electrocatalysts for sustainable energy applications.
- Developed graph and descriptor-based machine-learned potentials (MLPs) to describe surface-mediated adsorption, diffusion, and reaction phenomena; resulting MLPs are 1000x faster than the typical quantum chemistry methods.
- Led the MLP development efforts within the Kulkarni group; trained 4 graduate students and 3 undergrads in using benchmarking and benchmarking MLPs for dynamics (enhanced sampling) and property predictions.
- Combined several open source Python libraries to develop automated workflows for transition state search for metal catalysts; these tools are now being generalized to other materials
- Constructed computational workflows and curated datasets to enable large-scale screening of molecules and their properties for electrochemical oxygen separation.
- Participated in several large collaborative projects funded by DOE and industry for applications related to micro-kinetic modelling, catalyst deactivation, ML and electrochemical separations.

Graduate Researcher & Research Assistant

Carnegie Mellon University (Advisor: Zachary Ulissi)

- Applied machine learning and mathematical modelling to enhance the field of atomic-scale simulations
- Developed open source software and sampling strategies for an Active learning framework to accelerate Nudged Elastic Band calculations and Molecular Dynamics
- Built and tested workflows to identify lowest energy nanoclusters on a potential energy surface using a modified genetic algorithm enhanced with MLPs (Neural networks and Gaussian processes)
- Assisted a collaborative effort funded by ARPA-E working on surface segregation with Deep Reinforcement learning through dataset training and Bayesian optimization for hyperparameters

Undergraduate Thesis

National Institute of Technology (Advisor: S Saravanan)

• Designed a chemical plant and associated equipment for manufacturing Trichloroethylene

Research Intern

Singapore University of Technology and Design (Advisor: Arief S Budiman)

• Worked with collaborators on projects related to optimizing lightweight solar PV modules with a poly-carbonate substitute

Sep 2021 – Present Davis, CA

Jan 2020 - Jul 2021 Pittsburgh, PA

Jan 2019 – May 2019 Tiruchirappalli, India

May 2018 – Aug 2018

Aug 2019 - Dec 2020

Pittsburgh, PA

Sep 2021 - Present

Davis, CA

Tiruchirappalli, India Jul 2015 - May 2019

Singapore

PUBLICATIONS

- Enabling robust offline active learning for machine learning potentials using simple physics-based priors
 - * Muhammed Shuaibi, Saurabh Sivakumar, Rui Qi Chen and Zachary W Ulissi
 - * [Paper Link]
- Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
 - * Rajesh K. Raju, Saurabh Sivakumar, Xiaoxiao Wang and Zachary W Ulissi
 - * [Paper Link]
- Toward an ab Initio Description of Adsorbate Surface Dynamics
 - * Saurabh Sivakumar and Ambarish Kulkarni
 - * [Paper Link]
- An Automated Pynta-based Curriculum for ML-Accelerated Calculation of Transition States
 - * Trevor Price, Saurabh Sivakumar, Matthew S. Johnson, Judit Zador and Ambarish Kulkarni
 - * [Paper Link] (Under Review)

Selected Projects

Implementation of DOSTransformer

- Implemented Multi-Modal transformers to predict the density of states for crystalline structures based on existing code
- Modified the code to streamline training and improve functionality and obtained model metrics; Presented and evaluated cases for further improvement.

Classification of Musk Dataset from UC Irvine

• Implemented a neural network, k-NN, decision tree, and logistic regression classifiers with a prediction accuracy of at least 96% across all the classifiers.

Analysis of the COVID-19 dataset

• Exploratory analysis on the COVID-19 time-series dataset curated by the New York Times to showcase the effect of the COVID-19 pandemic across the USA.

Model predictions from the Abalone dataset from UC Irvine

• Performed Box-cox transformation, used a Greedy search strategy to implement a stepwise regression algorithm to find the best model according to AIC and BIC criterion. Implemented ridge regression on the dataset due to high multicollinearity as a comparison

Conferences & Posters/Talks

- AIChE Annual Meeting 2020 (Virtual). November 20 2020
 - * An Active Learning Framework for Accelerating Saddle Point Searches
 - * [Poster Abstract Link]
- Sandia & CERCAS Symposiums 2022
 - * Developing an integrated experiment theory approach to provide new insights into heterogeneous catalysis
 - * [Poster Link]
- NERSC AUG. Oct 23 2024
 - * Optimizing Chebyshev Interaction Model with Parallel Programming: From OpenMP to GPU Acceleration

Other Experiences & Awards

- NSF ACCESS compute grant worth 8m credits (100k node hrs) (Oct 2021 Present)
- Multiple NERSC compute grants totalling over 50k CPU and GPU node hrs (Nov 2021 Present)
- Judge, UC Davis ChemE symposium (Sep 2023)
- Reviewer, Journal of Open Source Software (Feb 2024 Present)
- Teaching Assistant, Chemical Reaction Engineering, 2023
- Head, Media Relations Pragyan (NITT's Technical Organization)

Jan 2022 – Mar 2022

Mar 2024 – Jun 2024

Mar 2022 – Jun 2022

Sep 2021 – Dec 2021