Saurabh Sivakumar

sausiva@ucdavis.edu | linkedin.com/in/saurabhsivakumar | github.com/saurabhsivakumar | Google Scholar

EDUCATION

University of California

Ph.D. in Chemical Engineering

Carnegie Mellon University

M.S in Chemical Engineering

National Institute of Technology

B. Tech in Chemical Engineering, Minor in Economics

Davis, CA

Sep 2021 - Present

Pittsburgh, PA

Aug 2019 - Dec 2020

Tiruchirappalli, India

Jul 2015 - May 2019

Interests

- Multi-scale atomistic simulations
- Data science applications in Engineering
- Deep Learning and Active Learning
- High-performance computing and automated workflow development

SKILLS

- Software/Frameworks: VASP, QuantumEspresso, LAMMPS,ORCA, COMSOL, GAMS, OVITO, ChemCAD
- Programming/Markup Languages: Python (Packages: ASE, Pytorch, scikit-learn, Numpy, Scipy, RDKit, MDanalysis, Seaborn, Matplotlib, Plotly, Pandas, WandB, Deap), R, Bash, LATEX, C/C++, Markdown, SQL

RESEARCH EXPERIENCE

Graduate Student Researcher

Sep 2021 – Present

University of California (Adviser: Ambarish Kulkarni)

Davis, CA

- ML-accelerated design of novel thermal and electrocatalysts for sustainable energy applications.
- Developed machine-learned potentials (MLPs) to describe surface-mediated adsorption, diffusion, and reaction phenomena; resulting MLPs are 1000x faster than the typical quantum chemistry methods.
- Led the MLP development efforts within the Kulkarni group; trained 4 graduate students and 2 undergrads in using MLPs.
- Combined several open source Python libraries to develop automated workflows for transition state search for metal catalysts; these tools are now being generalized to other materials
- Participated in several large collaborative projects funded by DOE and industry for applications related to catalyst deactivation and electrochemical separations.

Graduate Researcher & Research Assistant

Jan 2020 – Jul 2021

 $Carnegie\ Mellon\ University\ (Adviser:\ Zachary\ Ulissi)$

Pittsburgh, PA

- Applied machine learning and mathematical modeling to enhance the field of atomic-scale simulations
- Developed open source software and sampling strategies for an Active learning framework to accelerate Nudged Elastic Band calculations
- Built and tested workflows to identify lowest energy nanoclusters on a potential energy surface using a modified genetic algorithm enhanced with MLPs (Neural networks and Gaussian processes)
- Assisted a collaborative effort funded by ARPA-E working on surface segregation with Deep Reinforcement learning through dataset training and Bayesian optimization for hyperparameters

Undergraduate Thesis

Jan 2019 – May 2019

National Institute of Technology (Adviser: S Saravanan)

Tiruchirappalli, India

- Designed a chemical plant and associated equipment for manufacturing Trichloroethylene
- Formulated a theoretical design with focus on cost analysis and safety using ChemCAD

Research Intern

May 2018 – Aug 2018

Singapore University of Technology and Design (Adviser: Arief S Budiman)

Singapore

- Worked with collaborators on projects related to optimizing lightweight solar PV modules with a poly-carbonate substitute
- Conducted multiple experiments to test the bonding strengths of these poly-carbonates on PV cells

- Enabling robust offline active learning for machine learning potentials using simple physics-based priors
 - * Muhammed Shuaibi, Saurabh Sivakumar, Rui Qi Chen and Zachary W Ulissi
 - * [Paper Link]
- Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
 - * Rajesh K. Raju, Saurabh Sivakumar, Xiaoxiao Wang and Zachary W Ulissi
 - * [Paper Link]
- Quantifying surface diffusion of adsorbates on transition metal surfaces with machine-learned potentials
 - * Saurabh Sivakumar and Ambarish Kulkarni
 - * Manuscript in preparation (Working title)

Selected Projects

Classification of Musk Dataset from UC Irvine

Mar 2022 – June 2022

- Implemented a neural network, k-NN, decision tree, and logistic regression classifiers with a prediction accuracy of at least 96% across all the classifiers.
- Studied the effect of varying kernel types for SVM and different optimizers for NN and performed feature extraction with PCA
- Presented key results such as decision boundaries and errors for the classifiers

Analysis of the COVID-19 dataset

Jan 2022 – March 2022

- Exploratory analysis on the COVID-19 dataset curated by the New York Times to showcase the effect of the COVID-19 pandemic across the USA.
- Visualized the number of cases/mortalities to each county and state in the USA using plotly and Chloropleth plots.
- Analyzed the trends in certain states and counties by plotting the time series over 2 years with a weekly moving average to gain useful insights into the effect of vaccination rates.

Linear regression with the Abalone dataset from UC Irvine

Sep 2021 – Dec 2021

- Found the best linear regression model to predict the age of abalone using a four-step methodology with R
- Performed Box-cox transformation, used a Greedy search strategy to implement a stepwise regression algorithm
 to find the best model according to AIC and BIC criterion. Implemented ridge regression on the dataset due to
 high multicollinearity as a comparison

Optimal Scheduling of Copper concentrate operations under uncertainty Jan 2020 – May 2020

- Optimized an industrial scheduling problem with uncertainty (Mixed Integer Nonlinear problem) for a copper plant using code written in GAMS
- Corroborated the results of the publication on which the project was based; presented and assessed cases for further improvement.

Conferences & Posters

- AIChE Annual Meeting 2020 (Virtual). November 20 2020
 - * An Active Learning Framework for Accelerating Saddle Point Searches
 - * [Poster Abstract Link]
- Sandia & CERCAS Symposiums 2022
 - * Developing an integrated experiment theory approach to provide new insights into heterogeneous catalysis using atomically dispersed materials
 - * [Poster Link]

OTHER EXPERIENCES & AWARDS

- ACCESS compute grant worth 750k credits (500k core hrs) (Oct 2021 Present)
- Multiple NERSC compute grants totalling over 20k CPU and GPU node hrs (Nov 2021 Present)
- Judge, UC Davis ChemE symposium (Sep 2023)
- Member, AIChE (Oct 2019 Present)
- Member, ACS (Feb 2021 Present)
- Teaching Assistant, Chemical Reaction Engineering, 2023
- Head, Media Relations Pragvan (NITT's Technical Organization)